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Abstract In this paper it is argued that the use of density
functional theory (DFT) to solve the exact, non-relativistic,
many-electron problem, for magnetic systems requires impos-
ing space and spin symmetry constraints exactly in the same
way as it is currently done in ab initio wave function theory.
This strong statement is supported on pertinent calculations
for selected systems representative of organic diradicals,
molecular magnets and antiferromagnetic solids. These
calculations include several wave function methods of
increasing accuracy and different forms of the exchange-
correlation functional. The comparisons of numerical results
carried out always within the same standard Gaussian Type
Orbital atomic basis set show that imposing or not the spin
and space constraints (restricted or unrestricted formalisms)
leads to contradictory results. Therefore, it appears that, in
the case of the Heisenberg magnetic constant, the present
exchange-correlation functionals may provide reasonable
numerical results although for the wrong physical reasons
thus evidencing the failure of the current DFT methods to
properly describe magnetic systems.
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1 Introduction

Magnetic systems imply the presence of unpaired electrons
and may therefore appear equally in atoms, molecules or sol-
ids. For a large number of systems the magnetic moments are
well localized on a given atom or group of atoms, referred
to as magnetic centers; an effective magnetic moment, Si ,
can be associated to a given magnetic center i [1–3]. The
physical description of magnetic coupling in a broad class
of chemical compounds including organic biradicals, inor-
ganic complexes and ionic solids is based on the use of the
well-known phenomenological Heisenberg-Dirac-van Vleck
Hamiltonian [1–5], which describes the isotropic interaction
between localized magnetic moments Si and S j as

Ĥ H DV V = −
∑

<i, j>

Ji j Si · S j , (1)

where Ji j constant give the magnitude and type of interaction
between Si and S j localized spin moments thus governing
the energy difference between the different spin states aris-
ing from the interactions of Si and S j . With this form of the
spin Hamiltonian, a positive value of Ji j corresponds to a
ferromagnetic interaction in which a situation with parallel
spins is favored. The set {Ji j } of parameters (their number
and magnitude) defining this magnetic Hamiltonian charac-
terizes the magnetic ordering of the system and permits one
to describe the lowest part of the excitation spectra of mag-
netic systems. The sign and magnitude of the relevant (large
enough) Ji j parameters result from the particular electronic
structure that, at the same time, determines the stable crystal
structure of the system. Hence, the magnetic order and the
crystal structure of the system are consequences of the actual
electronic distribution.

The understanding of magnetic interactions is essential
to analyze and interpret, among others, neutron diffraction
experiments and magnetic susceptibility measurements. Most
important is the fact that magnetic interactions are at the
hearth of molecular based magnets [1–6] or of High-Tc super-
conductivity [7] and largely dominate the chemistry of radicals
[1,6,8]. Also, the description of magnetic states of damaged
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DNA, RNA or protein oxidation adducts by radicals has an
increasing interest because of their relevance to understand
the biological activity of important carcinogenic and anti-
tumor compounds. This is also important to investigate the
structure, conformation dynamics and spectroscopic proper-
ties of these complex biological molecules [9–14].

From the discussion above, it is clear that for a com-
plete picture of electronic structure, a detailed description
of magnetic interactions is unavoidable. Rigorously speak-
ing, this will require dealing with a fully relativistic formal-
ism. However, the complexity of the n-electron relativistic
problem does not permit to carry out the required calculations
in the systems of interest. Still, one can use the non-relativistic
Hamiltonian and handle magnetic interactions through a
proper introduction of spin coordinates and spin symme-
try. In this formalism, magnetic interactions in systems with
localized magnetic moments result from important electron–
electron correlation effects [1,8,15] which, to provide accu-
rate theoretical estimates of Ji j values, must be appropriately
described. This requires going beyond the usual mean field
theories and therefore, the electronic structure of magnetic
systems provide severe test cases for theoretical methods.
In this respect, one must realize that the widely used den-
sity functional theory (DFT) based methods (For reviews
on DFT methods, see for example Refs.) [16–25] is for-
mally a mean field approach but in which all electron–elec-
tron correlation effects are taken into account through the
exchange-correlation functional. Indeed, for the exact
exchange-correlation functional one would get the exact solu-
tion of the non-relativistic n-electron Hamiltonian. However,
since DFT does only make reference to the one electron
density matrix, the treatment of open-shell systems is not
straightforward although spin-polarized DFT is almost uni-
versally used [17–24]. Several authors have recently addressed
the problem of using DFT to predict the singlet–triplet gap,
or equivalent energy differences, in magnetic systems [4,5,
26,27]. The present work extends a previous analysis [28]
and critically examines the reliability of magnetic coupling
constants obtained by current implementations of DFT and
show that the proper treatment of general open shell elec-
tronic states, where spin cannot be neglected, requires a
revision of the current exchange-correlation potentials. This
analysis is carried out by closely comparing the fundamen-
tal equations for the total energy of a given system as
issued by wave function and density functional theory based
approaches.

In this work, we consider the elementary non-relativistic
many-electron problem and focus on the fundamental role
of spin restrictions imposed to the exact wave function and
to the corresponding reduced density matrices emphasizing
its relationship to DFT (Sect. 2). This is followed by a de-
tailed analysis of the problems encountered by DFT when
applied to open shell systems and review of recent spin re-
stricted formulations of DFT and, in particular, in the con-
text of applications to obtain magnetic coupling constants
(Sect. 3). Next, in Sect. 4, the relationship between spin re-
stricted and spin unrestricted approaches in practical appli-

cations to solid state problems is discussed and important
remarks are given. This is because the treatment of peri-
odic systems necessarily relies on spin polarized description,
which leads to conceptual difficulties in extracting the exper-
imentally observable magnetic coupling parameters from the
energy differences between magnetic states. This is certainly
a problem for practical applications and also a matter of con-
troversy. Moreover, the strong dependence of the results on
the exchange-correlation functional as well as on the spin
projection scheme considered put strong limitations on the
capability of DFT calculations to provide reliable description
of open shell systems. Section 5 provides strong evidence of
this statement by accurate calculations on systems represen-
tative of organic biradicals, molecular magnets and antifer-
romagnetic solids. Finally, Sect. 6 presents the conclusions
and further general remarks.

2 Remarks on wave function and density functional
theory approaches

The exact solutions of the non-relativistic n electron problem
are the different n electron �(r1s1; . . . ; rnsn) wave functions
satisfying the time independent Schrödinger equation which
can be written as [29–35]

E[�] = 〈�|Ĥ |�〉
〈�|�〉 . (2)

For a system with n electrons and N nuclei and neglecting
nuclear motion, the Hamiltonian of equation (2) becomes

Ĥ = T̂ + V̂ + Ŵ , (3)

with

T̂ = −1

2

n∑

i

= ∇2(i)

V̂ (R, r) =
n∑

i=1

v(ri ) =
N∑

I=1

n∑

i=1

−Z I

|RI − ri |

Ŵ =
n∑

i> j=1

1

ri j

where the first term stands for the electronic kinetic energy,
the second term is the electron–nuclear attraction potential
v(ri ) and 1/ri j is the two electron interaction potential. The
non-relativistic many-electron Hamiltonian (in the absence
of magnetic fields) does not act on spin coordinates of the
electrons. Nevertheless, anti-symmetry and spin restrictions
are imposed on the wave function �(r1s1; . . . ; rnsn) to sat-
isfy the Pauli principle and spin symmetry requirements. This
is the starting point for practical applications to the Hartree-
Fock approach [36], Multi-reference Self Consistent Field
approach [37,38], or Configuration Interaction approaches
based on different selection/truncation of the CI series (See
the general reviews [32–35] for details on all these methods).



Spin symmetry requirements in density functional theory 589

Notice, however, that the spin restrictions are imposed on
these wave functions not because they are approximate solu-
tions of the Schrödinger equation. In fact, spin symmetry
restrictions need to be imposed even on the Full Configura-
tion Interaction wave function which is the exact solution of
the Schrödinger equation in a finite subspace of Hilbert space.
Neglecting this constraint would result in broken symmetry
solutions where the total spin is no longer defined [39].

Defining γ1 and γ2, the usual one- and two- electron den-
sity matrices directly obtained from the �(r1s1; . . . ; rnsn)
wave function, as [29,31,32,40]

γ1(r1; r′
1) = n

∫
�(r1s1; . . . ; rnsn)

×�∗(r′
1s1; . . . ; rnsn)ds1 . . . dsndr2 . . . drn (4)

γ2(r1, r2; r′
1, r′

2) = n(n − 1)

2∫ {
�(r1s1; r2s2; . . . ; rnsn)�∗(r′

1s1; r′
2s2; . . . ; rnsn)

}

×ds1 . . . dsndr3 . . . drn, (5)

the energy of the n-electron system in the field of N fixed
nuclei can be written as

E = −1

2

∫

r1=r′
1

[
∇.∇T γ1(r1; r′

1)
]

dr1

+
∫

V (R, r)γ1(r1)dr1 +
∫

γ2(r1, r2)

r12
dr1dr2 (6)

where the quantities γ1(r1) and γ2(r1, r2) are the diagonal
elements, γ1(r1) = γ1(r1; r1) and γ2(r1, r2) = γ2(r1, r2;
r1, r2), of the spinless one- and two-electron density matri-
ces (Eq. (4) and (5)), respectively [29,31,32,40]. Notice that
the former is the one electron density ρ(r) commonly used
in electronic structure theory. Therefore, an accurate predic-
tion of the energy of a given system in a given electronic
state requires a reasonable estimate of �(r1s1; . . . ; rnsn).
It is customary to expand �(r1s1; . . . ; rnsn) in a known
basis set and to find the expansion coefficients using the
variational method and with all necessary and sufficient con-
straints (spin and space symmetries) to prevent the variational
collapse [41]; this is to avoid the convergence to a mathemati-
cal solution with no physical meaning. This is the basis of the
so-called Full Configuration Interaction (FCI) method which
provides the most accurate possible solution [40]. Indeed, for
a finite basis set this is the exact solution and has extensively
been used as a benchmark for quantum chemical methods
[42–46].

Equation (6) is the starting point of DFT which aims to
replace both γ1(r1; r′

1) and γ2(r1, r2) by the one-electron
density, γ1(r1) or ρ(r). For the ground state, this wish is
brought up by the celebrated Hohenberg-Kohn theorems [47]
which state that the exact ground state total energy of any
many-electron system is given by a universal, unknown func-
tional of the electron density only. Rigorously speaking, only
the second term of the right hand side part of Eq. (6) is an
explicit functional of the diagonal one-electron density ma-
trix, γ1(r1). The first term, which corresponds to the kinetic

energy is an explicit functional of the complete one-electron
density matrix, γ1(r1; r′

1). The major contribution to the elec-
tron–electron term comes from the classical electrostatic ‘self
energy’ of the charge distribution, which is also an explicit
functional of the diagonal one-electron density matrix [29].
However, the remaining contribution of the electron–elec-
tron term is still unknown. This and the non-diagonal part of
the electron kinetic energy term are usually added into a so-
called ‘exchange-correlation’ functional which also depends
on the one-electron density only (EXC [ρ]). The definition of
EXC [ρ] is the basis for the practical use of DFT. Since EXC
is a functional of the density it is possible to define a universal
functional which is derivable from the one-electron density
itself and without reference to the external potential V (R, r).
Hence, DFT offers a way to eliminate the connection with
the n-electron wave function working in terms of the density
function ρr alone. In addition, since the first HK theorem
states that there exists a one-to-one mapping between the
external potential V (R, r) and the particle density γ1(r1) or
ρ(r), it follows that ρ(r) determines the exact non-relativistic
Hamiltonian [Eq. (2)] and hence one may incorrectly claim
that ρ(r) does also determine the ground state wave function
�(r1s1; . . . ; rnsn). However, one must admit that, even in the
exact non-relativistic wave function, information regarding
spin is introduced ad hoc to fulfill the Pauli exclusion prin-
ciple and its consequent spin symmetry properties. In fact,
the expectation value of the square of the total spin angu-
lar momentum (Ŝ2), an experimental observable quantity, is
univocally defined by γ2(r1; r2) but this will take physically
meaningful values if and only if spin symmetry is imposed
on the �(r1s1; . . . ; rnsn) wave function.

Therefore, following McWeeny [29] one could reformu-
late DFT extending Levy’s constrained search [48] to ensure
not only that the variational procedure leads to a γ1(r) which
derives from some wave function � (the n-representability
problem) but also that � belongs to the totally antisymmetric
irreducible representation (A) of the spin permutation group
Sn (the Pauli principle). The above proposition can be written
in a mathematical form by rewriting Eq. (6) as

E = min
ρ→γ1 derived from�∈A

{
−1

2

∫

r1=r′
1

[
∇.∇T γ1(r1; r′

1)
]

dr1

+
∫

V (R, r)γ1(r1)dr1

+1

2

∫
γ1(r1)(1 − P12)γ1(r2; r′

2)

r12
dr1dr2

}
(7)

+ min
γ2 derived from �∈A

ECorrelation[γ2(r1, r2)]

which clearly shows the one-to-one relation between the one-
electron density, γ1(r1r′

1), and the main part of the energy E
and the explicit dependence of the electron–electron corre-
lation on γ2. According to the HK theorem, ultimately this
part is also a function of the one electron density and hence
one would have
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E = min
ρ derived from �∈A

{
−1

2

∫ [
∇.∇T ρ(r)

]
dr

+
∫

V (R, r)ρ(r)dr

+1

2

∫
ρ(r)ρ(r′)
|r − r′| drdr′ + EXC [ρ(r)]

}
(8)

where all unknown terms have been included in the exchange-
correlation functional. Equation (8) recovers the constrained
search as formulated by Levy [48] including explicitly the
condition that ρ is derived from an antisymmetric wave func-
tion.

Notice that if ECorrelation[γ2(r1, r2)] in Eq. (7) is forced
to be zero, one obtains another form of the well-known Har-
tree-Fock energy expression, whereas, if this is written in
terms of the electron density as in Eq. (8) and ρ is indeed
obtained from a single Slater determinant one obtains the
Kohn-Sham (KS) equations [49]. This assumes that the non-
diagonal terms of the kinetic energy and those arising from
the permutation operator are all included in EXC [ρ]. In the
Hartree-Fock method, the energy is obtained through a varia-
tional iterative procedure which involves the non-local Fock
operators [32] In the Kohn-Sham implementation of DFT
[49], the variational problem possesses the same mathemat-
ical structure of the Hartree-Fock problem, it can also be
solved iteratively leading to the well-known KS equations
commented above. The current implementation of DFT based
methods are almost universally based on the KS approach
and only differ in the particular way to model the unknown
EXC [ρ] term.

3 Density functional theory and the problem of open
shells: spin restricted methods

The Kohn-Sham implementation of DFT for molecules with
closed shell electronic structure and for non magnetic solids
ensures that the Pauli principle is fulfilled and, at the same
time, fixes the square of the total spin observable to zero.
However, for open-shell systems the situation is by far less
clear since by using only one Slater determinant, as in the spin
polarized implementation of the Kohn-Sham procedure [50,
51], it may become impossible to satisfy the spin and spatial
symmetry requirements. This is because only the Sz , the z
component of the total spin, is defined, as in the case of spin
polarized Hartree-Fock [52,53] (Unrestricted Hartree-Fock
(UHF). The problem of computing atomic multiplet energies
using DFT was analyzed in the pioneering work of Bagus
and Bennet [54] extended later by Ziegler et al. [55] These
authors already point out the difficulties of the Kohn-Sham
formalism when applied to open-shell systems and provide
some rules to compute the energy of a state with a defined
value of Ŝ2. A similar situation appears when using DFT
to attempt to compute the singlet–triplet gap in an organic
biradical or, equivalently, in a magnetic dinuclear complex
with two unpaired electrons [4,5]. Unfortunately, the original

works of Bagus and Bennet [54] and of Ziegler et al. [55] have
not caused the large impact they deserve and, to a large extent,
have been ignored by many theoretical chemists and physi-
cists more worried to obtain a number close to the experiment
than ensuring that the calculated value does indeed represent
a physical state.

Nevertheless, the spin polarized Kohn-Sham formalism
is broadly used to calculate the energy difference of the rel-
evant magnetic spin states. In this case one has to rely on
broken space and spin symmetry solutions to approximate
[56,57] the low spin electronic states. This approach and its
deficiencies have largely been described in previous works
[4,5,26,27,58,59]. However, the use of a broken symmetry
solution is still unavoidable for periodic systems. This point
will be further discussed in the next section.

Recently, new DFT based methods have been suggested
which aim to solve the problems encountered by spin polar-
ized approaches. In these methods, one attempts to derive
a spin-restricted formalism which would result in a proper
description of open shell states; this is a description where
Ŝ2 is imposed and is hence well defined. This is precisely
the common approach when using a wave function based
electronic structure methods. DFT formalisms imposing Ŝ2

are based either on spin restricted implementations of the
Kohn-Sham equations [60,61] or on the time dependent DFT
formalism applied to quantum chemical problems [60–62].

The time dependent DFT formalism may seem, at first
sight, a good alternative to correctly describe magnetic sys-
tems within DFT and it is expected to provide reasonable
values for energy differences between spin states. However,
in the case of magnetic systems, the open shell nature of
the low-spin state makes this approach unsuitable. This is
because of the impossibility to construct a reference configu-
ration which can produce both the singlet and the triplet states
by single excitations only. In addition, the very small value
of the energy differences between magnetic states (∼10 meV
or less) are well below the precision of current implementa-
tions of this method. Hence, even in a well-defined case,
in which a subset of magnetic states could be described by
single excitations on a given reference, the accuracy of this
approach is still too poor. This is due to the important depen-
dence of the energy values on the set of reference KS orbitals
used to generate the excited electronic states. Therefore, one
must conclude that time dependent DFT, in its standard form,
cannot be used to calculate magnetic coupling parameters in
magnetic systems.

The so-called spin-restricted open-shell KS (ROKS) and
spin-restricted ensemble-referenced KS (REKS) formalisms
proposed by Filatov and Shaik [63,64] furnish a general
approach to treat low-spin open-shell states within the con-
text of DFT and those are spin-restricted DFT methods con-
sidered in the present work. In the forthcoming discussion
the REKS/ROKS methods will be presented in some de-
tail and the basic equations compared to those of the gen-
eral restricted-open shell Hartree-Fock method [36,38]. The
REKS/ROKS approach is based on the ensemble representa-
tion for the density in DFT and combines it with certain ideas
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from wave function theory for constructing the energy func-
tional for ensemble densities. The non-interacting reference
wave function within this approach is restricted to have defi-
nite values of both Ŝ2 and Ŝz and therefore the constrained
search in Eq. (8) including the spin coordinates is fulfilled.
The energy and the density of a low-spin open-shell state
(e.g. multiplet state with � and S space and spin symmetry,
respectively) is represented as a weighted sum of energies
(densities) of the contributing microstates, �L , (see below)

E =
∑

L

CL E(�L) (9)

and the corresponding density

ρ =
∑

L

CLρL (10)

with the ‘weights’ CL restricted to sum up to unity.
∑

L

CL = 1 (11)

In turn, the microstates, �L , are viewed as states of mixed
symmetry (i.e. ensembles of pure states) which, in the non-
interacting case, may be represented by single determinants,
and their energies can be calculated within the standard KS
approach [51]. Within the ROKS approach to multiplet states,
the weighting factors CL are fixed by symmetry, whereas in
REKS they are obtained by minimizing the total energy

EROKS/REKS =
∑

k∈Occ

2hkk +
∑

k,l∈Occ

(2Jkkll)

+
∑

m∈Act

fm

[
2hmm +

∑

k∈Occ

(2Jkkmm)

]

+1

2

∑

m,n∈Act

(amm Jmmnn)

+
∑

L

CL Exc,L(ρα
L , ρ

β
L ) (12)

where the CL factors are variational parameters, hkk and
Jkkll are one and two electron integrals equivalent to those
appearing in Hartree-Fock theory, Exc(ρ

α
L , ρ

β
L ) is the usual

exchange-correlation energy which is calculated via the ρα
L

and ρ
β
L electron densities for the microstate �L . The vector

coupling coefficients fm and amn are related to the weight-
ing factors CL and to integer occupation number(s) of the
spin-orbitals in microstate �L as in Eqs. (13) and (14).

amn =
∑

L

CL(ηα
mL + η

β
mL)(ηα

nL + η
β
nL) (13)

fm = 1

2

∑

L

CL(ηα
mL + η

β
mL) (14)

The microstates �L are constructed from the set of KS orbi-
tals (φk) which are obtained self-consistently with respect
to the energy in Eq. (12). A detailed description of the orbi-
tal optimization techniques can be found elsewhere [63–65].

The use of ensemble representation leads to appearance of
the fractional occupation numbers of the KS orbitals (φk) in
the total density, i.e.

ρ =
∑

k

nk |φk(r)|2 (15)

where

nk =
∑

L

CL(ηα
kL + η

β
kL) (16)

The ROKS/REKS procedure shows important analogies with
the restricted open shell Hartree-Fock method. Note, how-
ever, that, in the latter method, it is the wave function and not
the energy and the density that is averaged over a set of mi-
crostates, which degenerate for the non-interacting electronic
Hamiltonian. For multiplet states, the use of exchange-cor-
relation functionals in ROKS/REKS provides better descrip-
tion of correlation stabilization effects [65]. Moreover, it is
expected that the spin adapted description of ROKS/REKS
approach should provide a correct description of the singlet–
triplet splitting in diradicals or related systems which is free
of the ambiguities arising from using spin unrestricted ap-
proaches based on broken-symmetry solutions [66,67].

A detailed comparison of REKS/ROKS equations with
the general form of the restricted open-shell Hartree-Fock
(ROHF) expression [38,68] for the expectation value of the
electronic energy can be useful to understand some aspects of
the method and to get insight into the approximations made.
The general restricted open-shell Hartree-Fock equations can
be written as follows [38]:

EROHF =
∑

k∈Occ

2hkk +
∑

k,l∈Occ

(2Jkkll − Kkllk)

+
∑

m∈Act

fm

[
2hmm +

∑

k∈Occ

(2Jkkmm − Kmkkm)

]

+1

2

∑

m,n∈Act

(amn Jmmnn − bmn Kmnnm) (17)

where Kkllk are the corresponding exchange integrals and

bmn =
∑

L

W 2
L(ηα

mLηα
nL + η

β
nLη

β
mL), (18)

amn =
∑

L

W 2
L(ηα

mL + η
β
mL)(ηα

nL + η
β
nL), (19)

fm = 1

2

∑

L

W 2
L(ηα

mL + η
β
mL). (20)

These coefficients, also known as state parameters, are fixed
by the spatial and spin symmetry restrictions and amn and fm
are positive definite and evaluated using Eqs. (19) and (20),
respectively. Note that the weighting factors WL are used in
the wave function averaging and thus they are squared in Eqs.
(18–20). A more compact form of Eq. (17) is Eq. (21),

E =
∑

m∈Occ∪Act

fm Em (21)
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where fm is evaluated according to Eq. (20). It is important
to point out the close similarity between Eq. (21) and Eq. (9).
However, in the case of REKS/ROKS, the dynamic correla-
tion is included through the exchange correlation functional
term which may be viewed as a modified two-electron inte-
gral or, equivalently, a “dressed” value of the matrix element
of the Fock operator.

In order to conclude this discussion it is interesting to
compare the ROKS/REKS and ROHF energy expressions
above. One could argue that, for the case of two unpaired
electrons, replacing the exchange correlation functional with
the HF exchange the REKS description should be equal to
that obtained with a complete active space self consistent
field (CASSCF) calculation with an active space having two
active electrons in two active orbitals [CASSCF(2,2)]. How-
ever, since CASSCF provides the best variational solution
within the active space, the mixing of configurations mini-
mizes both the dynamic and non-dynamic correlation energy,
again within the given active space. The major difference be-
tween CASSCF and REKS concerns a possible double count-
ing of the dynamic correlation. This is because the latter is a
DFT method in which the dynamic correlation is supposed to
be included via the correlation functional. Therefore, to avoid
any double counting of dynamical correlation, the configu-
ration mixing in REKS should minimize the non-dynamic
correlation only, which leads to a certain difference in the
results of REKS with the HF exchange and the results of
CASSCF(2,2).

From the discussion above it also appears that the ROKS/
REKS expressions are somehow related to average methods
such as those proposed long ago by Nesbet [69] and McWe-
eny [32]. In more detail, the REKS energy functional with
the HF exchange does not only reduce to the CASSCF(2,2)
energy expression because, as a result of the different mixing
coefficients, the REKS energy functional has a dependence
on the occupation numbers of the active orbitals which is
different from that of the CASSCF(2,2) wave functions. In
fact, for two active orbitals a = φa and b = φb, one has

E(REKS) = na

2
E(aa′) + nb

2
E(bb′)

+(nanb)
3/4

[
E(ab) − E(ab′)

2
− E(a′b)

2

]

(22)

and

E(CAS)= na

2
E(aa′)+ nb

2
E(bb′)

+(nanb)
1/2

[
E(ab)− E(ab′)

2
− E(a′b)

2

]
, (23)

respectively, where the primes indicate opposed spin and na
and nb are computed according to Eq. (16) for REKS and its
corresponding version for CASSCF(2,2), respectively. These
expressions become identical for na = nb = 1, which is as-
sumed to be the case of pure non-dynamic correlation, but
slightly different otherwise. The REKS expression was in-
tended to eliminate, as much as possible, the double counting

of the dynamic correlation arising from the use of a refer-
ence system for the non-interacting electrons that effectively
corresponds to a superposition of configurations. In the REKS
method, the (nanb)

3/4 prefactor in front of the coupling term
in the energy expression in Eq. (22) comes from the geo-
metric average between (nanb)

1/2 and (nanb), which are the
CASSCF and fractional occupation number DFT formalism
proposed earlier by Slater [70] and revised more recently by
Dunlap and Mei [71] and Averill and Painter [72]. Obviously,
alternative options other than the geometric average can be
defined by interpolating between the two limits. However, in
general, the information needed to carry out such interpola-
tion is insufficient.

4 Spin unrestricted density functional theory:
implications for periodic calculations

Apart from the fundamental problem of the correct intro-
duction of spin in DFT, this work is also motivated by the
erratic DFT description of the non-dynamical electron cor-
relation arising from configurational degeneracy [26]. For
systems with two magnetic centers it has been shown that
there exists a one to one mapping between spin eigenfunc-
tions and the eigenstates of the Heisenberg Hamiltonian and
also between the broken symmetry (BS) solutions obtained
from U- formalisms and the eigenstates of the Ising Ham-
iltonian, respectively [1,4,5,56–58]. The former are eigen-
functions of S2 whereas the latter are only eigenfuctions Sz .
This mapping justifies the use of the Ising model and offers
a consistent scheme to extract the magnetic coupling con-
stants through the BS approach, either in the U-HF or U-KS
schemes [4,5]. The mapping procedure leads to the same
energy expressions suggested originally by Noodleman for
the strongly localized limit [56,57]. In the case of U-HF, the
mapping procedure does always lead to consistent results as
discussed below for the molecular case. However, in the case
of DFT it is customary to also use the mapping procedure or
the corresponding spin projected solution [4,5,73,74]. The
use of the unprojected results may obscure some important
issues [4,5,28,56–58,75–77] and lead to some contradictions
[5,28]. Still, the auxiliary nature of the KS orbitals makes this
procedure at least controversial [4,5,78].

Electronic structure calculations for solid state systems
face an additional difficulty. This is because periodic symme-
try can be imposed rather easily to a single Slater determinant
wave function or Kohn-Sham electronic reference system but
so far have not been even formulated for multideterminantal
wave functions. Therefore, solid state approaches to elec-
tronic structure are constrained to use spin polarized formu-
lations. For the case of high spin coupling in the unit cell this
choice does not pose additional problems. However, for the
case of low spin or antiferromagnetic couplings this neces-
sarily leads to broken symmetry solutions. This fact and the
strongly correlated nature of many magnetic systems have
resulted in strong limitations of current periodic solid state
methodologies, either HF or DFT, to describe these fasci-
nating solids. Only very recently the comparison between
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Table 1 Singlet–triplet energy differences (J in cm−1) in linear H–He–H for various H–He distances

Method H–He distance
WFN Spin adapted 1.250 Å 1.6250 Å 2.000 Å

FCI Yes −4860 −544 −50
DDCI Yes −4815 −542 −53
CASSCF Yes −4250 −492 −50
CASCI Yes −3374 −415 −45
UHF No −1929 −213 −21

DFT
B3-LYP Yes −5228 −624 −65

No −4196 −497 −55
B-PW91 Yes −5871 −718 −75

No −4352 −452 −44
B-LYP Yes −6265 −792 −84

No −5138 −593 −65
PW91-PW91 Yes −5778 −711 −74

No −4263 −441 −41
LDA Yes −7659 −1088 −124

No −6264 −776 −85

In the case of U- methods the BS–FM value has been considered. WFN and DFT methods are ordered according to their accuracy; for each family,
the most accurate results first. For the DFT calculations, Yes stands for the REKS/ROKS results whereas No stands for the unprojected broken
symmetry results

periodic U-HF with equivalent calculations on cluster mod-
els of the same systems have provided numerical arguments
supporting the conclusion that the magnetic interactions are
local in nature and that the same mapping procedure is needed
to extract coherent J values [4,5,79]. It has been shown that
the eigenstates of the Ising Hamiltonian provides, as in the
case of molecular approaches, a general, coherent scheme to
relate the energy difference between different magnetic solu-
tions and J values. However, as pointed out above, one may
argue that in the case of DFT approaches the use of the Ising
model Hamiltonian and the corresponding mapping should
not be used. Here, it is important to point out once again
that the electron density does only define the non-relativistic
Hamiltonian and, hence, spin properties need to be imposed.
The comparison to cluster model calculations for the same
system (whenever possible) within the same computational
scheme and the use of the mapping approach provides so far
the only possible guide.

5 Results and discussion on selected numerical examples

Selected magnetic systems has been explored with various
definitions of the EXC [ρ] using either the approximate BS
approach or the theoretically grounded REKS formalism. The
choices for EXC [ρ] include the local density approximation
(LDA) and several methods based either on the generalized
gradient approach (PW91-PW91, B-PW91 and B-LYP) or on
HF/DFT hybrid approaches (B3-LYP). For further details on
the application of these DFT methods to magnetic coupling
see also Refs. [4, 26, 27]. The accuracy of each approach
is established by comparison to experiment and/or ab initio
calculations using highly sophisticated wave function meth-
ods. The wave function methods chosen in the present study
are complete active space configuration interaction (CASCI),
complete active space self consistent field (CASSCF) and

difference dedicated configuration interaction (DDCI) [80,
81]. These wave function based methods have been exten-
sively used to describe magnetic coupling in a broad family
of compounds and whenever experimental data is available
the calculated results are all in the experimental range [79].
In all cases, the minimum CAS including the two unpaired
electrons in two (magnetic) orbitals has been considered; the
same active space is employed in the REKS calculations1.

Results are presented for examples as representative of
different families of systems with either ferro- or antifer-
romagnetic coupling. First, we consider the H-He-H model
system for which the exact solution within a finite basis set
is attainable. The second example is the 1,1’,5,5’-tetrameth-
yl-6,6’-dioxo-3,3’-biverdazyl radical; a prototype of organic
diradicals. This is followed by the study of [Cu2Cl6]2− which
can be considered an example of magnetic dinuclear transi-
tion metal compounds. Finally, results are presented for a
cluster model representation La2CuO4. The latter is repre-
sentative of High-Tc superconductor parent compound and
also is used as an example of a system in condensed phase.
These systems are especially well suited for this kind of study
since they were also chosen to test the performance of mul-
tireference second order perturbation methods [82].

Tables 1 and 2 report the energy difference between the
electronic states related to the magnetic order. The same stan-
dard Gaussian Type Orbital atomic basis sets are used for all
methods2. For the R-formalisms, this energy difference cor-
responds to the singlet–triplet gap and, hence, it is directly

1 CASSCF calculations through MOLCAS5.0 by Andersson et al.,
University of Lund, Sweden, 2003. CASCI and DDCI used the CASDI
suite of programs by Maynau D and Ben Amor N, IRSAMC, Toulouse,
1997. The REKS and BS-DFT calculations through a modified version
of GAUSSIAN98 (Rev. A.11) by Frisch et al., Gaussian Inc., Pittsburgh,
PA, 1998; for REKS/ROKS implementation see Refs. [63–65].

2 Basis sets: 6-31++G** for H and He; 6-3111+G for Cu; 6-31G*
for C, N, Cl and O.
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Table 2 Singlet–triplet energy differences (in cm−1) for the biverdazyl radical, the [Cu2Cl6]2− and the two center cluster model representation
of La2CuO4

Method System
WFN Spin adapted Biverdazyl [Cu2Cl6]2− La2CuO4

Experiment Yes −769 [−40,0] −1081±40
DDCI Yes −607 −7 −1129
CASSCF Yes −413 +13 −281
CASCI Yes −391 +17 −260
UHF No −314 +23 −152

DFT
LDA Yes −1196 −99 −3665

No −920 −232 −3309
PW91-PW91 Yes −933 +18 −2718

No −725 −169 −2438
B-PW91 Yes −907 +18 −2701

No −709 −167 −2438
B-LYP Yes −942 +1 −2727

No −731 −177 −2445
B3-LYP Yes −479 +115 −895

No −605 −46 −954

In the case of U- methods the BS–FM value has been considered. WFN and DFT methods are ordered as in Table 1. Experimental results
are discussed in Refs. [4,82]. For the DFT calculations, Yes stands for the REKS/ROKS results whereas No stands for the unprojected broken
symmetry results

related to the Heisenberg J parameter. In the U-formalisms,
the energy differences involve the ferromagnetic state
(|F M >) and the space and spin symmetry broken solu-
tion (|BS >) which is generated via spin inversion on one
center. In the particular case where Fock exchange is used
and correlation neglected in EXC [ρ], it has been shown that
J = 2[E(|BS >) − E(|F M >)] since |BS > is a 50%
mixture of singlet and triplet states [4,56–59]. However, one
can claim that, in the absence of magnetic fields, DFT is an
effective one electron theory and consequently that S2 and
spin density are not rigorously defined in DFT and therefore
one should not try to use the same concepts as in wave func-
tion theory [83]. The discussion on Sect. 3 has clearly shown
that such line of reasoning is incorrect. Let us recall once
again that the density determines the non-relativistic Hamil-
tonian and, consequently, spin properties have to be imposed
as they are effectively imposed in wave function theory. Still,
neglecting all these arguments one may, again incorrectly,
claim that the DFT energy of the |BS > solution has to be
taken as an approximation to the lowest singlet energy even if〈
Ŝ2

〉
and the spin-density are qualitatively incorrect [83]. In

other words, one assumes that J = E(|BS >)− E(|F M >).
In what follows, it is demonstrated that the last supposi-
tion, although perhaps numerically acceptable [83,84] is in
strong contradiction with the rigorous first principles dis-
cussed above. Furthermore, we will argue that this numerical
coincidence with experiment is largely due to incomplete
cancellation of the electron self-repulsion (contained in the
classical Coulomb term of the KS Hamiltonian) by an approx-
imate exchange functional EX [ρ] [84].

First, we comment on the results obtained using the
highly accurate DDCI method (Tables 1 and 2). In all cases,
the calculated J values are comparable to experimental
available data and for H-He-H nicely reproduce the exact

FCI values. The CASSCF and CASCI methods tend to
systematically underestimate the superexchange contribution
of J, because the dynamic electron–electron correlation
effects are neglected [15,79]. In some cases, as in [Cu2Cl6]2−,
this lack of dynamical correlation leads even to qualitatively
incorrect results [4]. The U-HF values (not shown) are close
to CASCI or CASSCF results, provided that appropriate spin
projection is carried out [4,5,54–59]. This is because the sym-
metry breaking introduces certain amount of non-dynami-
cal electron-correlation [85,86], which is largely responsible
for the superexchange contribution of the magnetic coupling
parameter [15,79,87]. Here, it is important to remark that
the U-HF projected J values are always consistent with the
mapping procedure.

A totally different situation appears when examining the
family of DFT results. The results summarized in Tables 1
and 2 show that REKS and U-KS results appear quite differ-
ent and, in addition, the difference seems to be rather erratic
and not following any general rule or definite trend. This is
in a serious contradiction to the behavior of wave function
based methods. In this case, R-HF (not shown) results largely
overestimate the J value although the reason for such path-
ological behavior are well-known; it simply follows from
the fact that R-HF calculations only include direct exchange
and neglect all correlation, non-dynamical, and dynamical
effects. However, spin projection is carried out provided U-
HF calculations provide a fair estimate of the CASSCF re-
sults as indicated above. In the case of DFT calculations,
the numerical results would suggest that in some cases one
needs to carry out a pertinent spin projection whereas in other
cases this seems unnecessary because of the fortuitous coin-
cidence of R-KS and U-KS results. To make it worse, this er-
ratic behavior is not only dependent on the particular choice
of EXC [ρ] but it does also depend on the particular system
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under study. The implications of these results are huge and
indeed very serious because they indicate that, in absence of
experimental references, DFT predictions of magnetic Hei-
senberg parameters obtained with the available approximate
density functionals for EXC [ρ] cannot be trusted at all. At
first sight, one can argue that the deficiencies of DFT methods
are related to the “parametrization” of the particular approx-
imate functional chosen to represent EXC [ρ]. However, the
strange behavior does also hold for LDA and GGA, which
are derived from first principles for the uniform or weakly
inhomogeneous electron gas, although the GGA implementa-
tions are only approximate. Results in Table 2 show that large
differences between R-KS and U-KS values are found for the
Cu binuclear complex (as one would expect by comparison
to the HF theory). However, these differences are largely re-
duced for the biverdazyl organic radical and almost disappear
for the La2CuO4 cluster model. This complete set of numer-
ical results show how dangerous it is to make predictions on
the magnetic coupling of biradicals, dinuclear systems, or
magnetic solids. When the experimental result is known, one
can investigate the performance of a given exchange-correla-
tion potential in the usual U-KS implementation and decide
whether from a pragmatically point of view it is better to pro-
ject the result or not. This strategy may be useful in analyzing
trends in a family of analogous compounds. However, when
experimental results are not available, it is very difficult to
decide the numerical recipe to be followed. This leads one to
conclude that even if U-KS may predict a reasonable numer-
ical estimate of the magnetic coupling parameter, which in
turn can be in agreement with experiment, it is well possible
that such a result is not justified from a rigorous application
of theory.

From the above discussion one may reach the conclu-
sion that the failure of current DFT methods to properly
describe magnetic systems lies on the approximate nature
of the exchange-correlation functional and argue that with
the exact-correlation functional and with the appropriate spin
constraints as in the REKS method one would necessarily get
the exact value. This statement can be checked indirectly by
making use of the well-known feature of DFT to reduce to the
HF theory upon replacing its exchange-correlation functional
with the Fock exchange only. This is true for the closed-shell
KS theory, the spin-unrestricted KS theory, and the ROKS
method, which reduces to the respective spin-restricted open-
shell SCF theory of Roothaan [36], of course for those terms
which can be described within the latter theory. However, this
does not hold for the REKS method, which, upon replacing
the DFT exchange-correlation with the HF exchange, does
not reduce to the respective SCF theory, CASSCF(2,2). The
major difficulty in combining the multi-reference approaches
with DFT is that the double counting of the correlation en-
ergy (once via density functional and twice via configuration
mixing) must be avoided. The MCSCF procedure describes
both the non-dynamic and the dynamic correlation energy
within a given active space. Following Savin et al. [88],
one can subtract from the correlation functional that fraction
of the dynamic correlation energy, which has been already

included via the MCSCF procedure. Alternatively, one can
eliminate the dynamic correlation from the MCSCF part. It
is this latter route that is followed in REKS. Of course, there
is no rigorous means to distinguish between the dynamic and
non-dynamic correlation in molecules. Therefore, the REKS
description of non-dynamic correlation only is an approxi-
mate model, which can be more or less precise. However,
as shows Table 3, where the results of the DFT calculations
carried out with the Fock exchange only are collected, the
REKS (HF) description may not be entirely unreasonable.
The REKS single–triplet differences are underestimated as
compared to the CASCI or CASSCF ones, which suggest
that at least a part of the dynamic correlation is correctly
removed. Quite interestingly, the REKS energy differences
are close to those obtained within the symmetry-broken UHF
theory but without taking spin projection into account. One
must remind that according to rigorous mapping procedures
the energy difference between BS and HS is not the singlet–
triplet gap but just half of its value. However, the numer-
ical coincidence between the REKS/ROKS singlet–triplet
gap and the corresponding value obtained through the broken
symmetry approach (but without projection) when using HF
exchange only may be simply accidental, because the broken-
symmetry UHF theory describes incorrectly [85] both parts
of the correlation energy, dynamic and non-dynamic.

6 Conclusions

The reported results provide compelling evidence of incon-
sistencies in the current implementations of DFT for open
shell systems. In the case of U-KS formalism, the theoretical
discussion in Sects. 2 and 3 shows unambiguously that the
use of the projection procedure is strictly necessary to rig-
orously relate the calculated energies to energy differences
between pure spin states. This is in agreement with the earlier
suggestions of Bennet and Bagus [54] and Ziegler et al. [55]
and is contrary to the claims of Perdew et al. [83] Hence,
for the case of two unpaired electrons the singlet–triplet gap
must be obtained as twice the difference between the energy
of the broken symmetry solution and that of the highest spin
setting. Accordingly, differences with respect to the experi-
ment cannot be attributed to the treatment of the spin but to
limitations of the exchange-correlation functional.

In the case of spin restricted implementations of DFT such
as the REKS/ROKS methods used in this work, the numerical
results again evidence inconsistencies of the current forms of
the EXC [ρ]. In fact, REKS/ROKS calculated values of the
magnetic coupling constant are found to exhibit an erratic
behavior with respect to experiment and wave function based
methods. In some cases, the calculated REKS/ROKS values
resemble the unprojected U-KS values, whereas, in other sit-
uations, they are quite far away from it. Moreover, this strange
trend is not only system dependent but also functional depen-
dent. Finally, we note that the REKS method does not reduce
to the corresponding CASSCF(2,2) result when the HF-null
functional is used.
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Table 3 Singlet–triplet energy differences (J in cm−1) in linear H–He–H for various H–He distances, the biverdazyl radical, the [Cu2Cl6]2− and
the two center cluster model representation of La2CuO4

Method H-He distance
WFN 1.250 Å 1.6250 Å 2.000 Å

CASSCF −4250 −492 −50
CASCI −3374 −415 −45
UHF −1929 −213 −21

DFT
REKS/ROKS (HF-null) −2533 −267 −25
Method System

WFN biverdazyl [Cu2Cl6]2− La2CuO4
CASSCF −413 +13 −281
CASCI −391 +17 −260
UHF −314 +23 −152

DFT
REKS/ROKS (HF-null) −260 +19 −156

In the case of U- methods the BS–FM value has been considered. WFN and DFT methods are ordered according to their accuracy; for each family,
the most accurate results first

Therefore, one must conclude that, although some mean-
ingful trends regarding magnetostructural relationships arise
from DFT calculations, comparing DFT values of the mag-
netic coupling constants to experiment is very delicate. In
the case of U-KS methods one may obtain good numerical
result but the price to be paid is to disregard fundamental con-
straints and sometimes even to completely lose the physical
reference. However, the difference between taking or not into
account the corresponding spin projection, a factor of 2 in the
cases with one magnetic electron per center, decreases with
increasing the number of unpaired spins; the factor is 1.50
for two electrons per center as in NiO and related systems
and goes down to 1.25 for the case of Mn2+ compounds such
as MnO. Therefore, in these cases the pragmatic advantage
of the unprojected formula is lost.

In the case of the R-KS method the results are too sys-
tem and functional dependent thus evidencing weaknesses in
the current exchange-correlation functionals. In this respect,
there is a need for a continued search of more accurate expres-
sions of the exchange-correlation functional. There is also a
need for new methodological developments that ensure that
the calculated densities correspond to systems with a per-
fectly defined multiplicity. These new methods must fill in the
existing gap between wave function and DFT approaches in
what concerns spin properties. In this sense, the REKS/ROKS
implementation of DFT is a first promising step since it avoids
the formal problems of the unrestricted approaches and pro-
vides a proper representation of the electronic structure of
atoms, molecules, and solids in the non-relativistic domain
as in many-electron wave function theory. However, there
is still place for improvement, in particular, with regard to
the description of non-dynamic correlation only within the
REKS method when the HF-null functional is used.

In conclusion, in order to use DFT to solve the exact, non
relativistic, many-electron problem, one should impose the
space and spin symmetry constraints as it is currently done in
ab initio wave function theory. Bypassing this fundamental
theoretical requirement would lead to inconsistent results.

In the case of magnetic coupling, DFT can provide seem-
ingly accurate numerical results but for the wrong physical
reasons.
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